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Abstract

The energy method is developed to discuss the non-linear stability of convection in a horizontal porous layer

subjected to an inclined temperature gradient and a variable gravity ®eld. Both linear and non-linear stability analyses

are carried out for a large number of parameter values. The eigenvalue problems in both cases are solved by the

Chebyshev tau-QZ method with optimization routine. It is found that the preferred mode at the onset of convection is a

longitudinal mode and that a decrease in gravity variation has a stabilizing e�ect on the system. Comparisons between

the linear and energy stability results show that as the horizontal Rayleigh number increases the di�erence between the

two results increases and thus indicates the possibility of subcritical instability. Ó 2001 Elsevier Science Ltd. All rights

reserved.

1. Introduction

The stability problem of the steady convective ¯ow,

which is caused by an inclined temperature gradient in

the shallow horizontal layer of the porous medium has

been studied by Weber [1], and Nield [2,3]. Weber's

analysis was concerned with a small non-dimensional

horizontally applied temperature gradient b, and used a

perturbation method to solve the eigenvalue problem.

Nield's [2] analysis removed the restriction of small b
and employed a lower order Galerkin approximation to

solve the eigenvalue problem. In a subsequent paper,

Nield [3] improved the accuracy of the results of his

previous paper by considering a higher order Galerkin

approximation and showed the e�ect of increasing hor-

izontal Rayleigh number on the value of critical vertical

Rayleigh number. Kaloni and Qiao [4] presented the

non-linear energy stability of this problem and provided

more accurate results for both linear and non-linear

theories. Further extensions of this problem by consid-

ering the e�ects of adding a net horizontal mass or a

vertical through ¯ow have been investigated by Nield

[5,6]. The corresponding non-linear results by the energy

stability method for these extensions have been reported

by Qiao and Kaloni [7,8].

Our purpose here is to generalize the results of [3,4]

by considering the variation of the gravity ®eld. We

present both the non-linear stability results via the

energy method and the linear stability results for the

title problem. As is well-known, consideration of vari-

able gravity e�ect are of likely importance in large-scale

convection problems and also in material processing

technology. We ®nd that the decreasing gravity

parameter has a stabilizing e�ect on the system. We

also note that as the values of longitudinal Rayleigh

number increase the gap between the linear and energy

stability results widens. We thus have the possibility of

a sub-critical instability. We point out that Straughan

[9] has studied the convection in a variable gravity ®eld

in a viscous ¯uid layer and Rionero and Straughan [10]

in a porous layer with internal heat source subjected to

a vertical temperature gradient only. Both these papers

employ the energy method, and also provide the linear

stability results. In the absence of heat source, the re-

sults of [10] agree with our results when we eliminate

the consideration of horizontal temperature gradient

in our analysis. In the absence of gravity variation,

we recover the results of Nield [3] and Kaloni and

Qiao [4].
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We remark that the linear theory gives a su�cient

condition for the instability of basic ¯ow whereas the

energy theory gives a su�cient condition for the stability

of basic ¯ow. In the former case, above the critical

Rayleigh number, the system becomes linearly unstable

and convective motion begins. It is, however, possible

that convection could commence below the critical value

of the Rayleigh number and in that case, the energy

results become very important. For, they delimit a band

of Rayleigh number, where possible sub-critical insta-

bilities might arise. Besides, below the critical value they

also guarantee the decay of arbitrary disturbances at all

times. We also point out that whenever the energy

stability results are close to linear instability results,

there is a good possibility of stationary convection.

However, wide spectral boundaries between the two

methods suggest a possible overstable convection.

2. Governing equations

We investigate the problem of B�enard convection in a

¯uid-saturated porous medium induced by an inclined

temperature gradient with the gravity g depending on

the vertical coordinate z�. The Cartesian axes are chosen

with the z�-axis vertically upwards and the x�-axis in the

direction of applied horizontal temperature gradient bT .

We assume that a porous medium occupies an in®nite

horizontal layer of height H. The vertical temperature

di�erence across the boundaries is DT . It is assumed that

the ¯ow in the porous medium is governed by the

Darcy's law, which is modi®ed to add the gravitational

term to the right-hand side of the Darcy equation. We

shall also adopt the Boussinesq approximation which

takes the density qf a constant everywhere except in the

body force term which can be expressed as

qf � q0�1ÿ cT �T � ÿ T0��; �1�
where q0 is a constant, T � the temperature, T0 the ref-

erence temperature and cT is the constant coe�cient of

volumetric expansion. The variation of gravity g is as-

sumed to be given by

g � g�z�� � g0h�z�=H�; �2�
where g0 is the constant gravitational acceleration. For

convective motion of an incompressible ¯uid in a porous

medium, the relevant governing equations may be

written as [3,4]

r� � v� � 0; �3�

l
K

v� � r�P � � qf gk; �4�

�qc�m
oT �

ot�
� �qc�f v� � r�T � � kmr�2

T �; �5�

where v� � �u�; v�;w�� is the seepage velocity, P � the

pressure, and k is the unit vector in the z�-direction.

The subscripts m and f refer to the porous medium and

the ¯uid. l, c, K and km denote the viscosity, the spe-

ci®c heat, the permeability of the medium, and the

thermal conductivity, respectively. The boundary con-

ditions are

w� � 0; T � � T0 ÿ ��DT �=2ÿ bT x� at z� � � H=2:

�6�
We introduce the following non-dimensional quantities

x � x�=H ; t � amt�=�AH 2�; v � Hv�=am;

Nomenclature

g gravitational acceleration

H layer height

i; j; k unit vectors in the x-; y- and z-directions,

respectively

K permeability

P ; p dimensionless pressure/perturbed pressure

ps dimensionless steady state pressure

RH horizontal Rayleigh number

RV vertical Rayleigh number

RL the critical vertical Rayleigh number of linear

theory

RE the critical vertical Rayleigh number of energy

theory

T dimensionless temperature

Ts dimensionless steady state temperature

t dimensionless time

u; v dimensionless perturbed velocity vector/

velocity vector

us dimensionless steady state velocity vector

x; y; z dimensionless Cartesian coordinates

Greek symbols

a dimensionless overall horizontal wave number

ax dimensionless horizontal wave number in

x-direction

ay dimensionless horizontal wave number in

y-direction

am thermal di�usivity

bT horizontal temperature gradient

cT coe�cient of volume expansion

h perturbed dimensionless temperature

j thermal di�usivity

l dynamic viscosity

q0 density at the reference temperature

qf the density
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P � K P �
�
� q0g0

Z
h�z� dz

��
�lam�;

T � RV�T � ÿ T0�=DT ;

am � km=�q0c�f ; A � �qc�m=�q0c�f ;

RV � q0g0cT KHDT
lam

; RH � q0g0cT KH 2bT

lam

;

where RV and RH are referred to as the vertical Rayleigh

number and the horizontal Rayleigh number, re-

spectively. Upon substitution of these non-dimensional

variables into Eqs. (3)±(5) and with the use of Eqs. (1)

and (2), the non-dimensional governing equations then

take the form (omitting the star over each variable

hereafter for the sake of convenience):

r � v � 0; �7�

v�rP � h�z�T k; �8�

oT
ot
� �v � r�T � r2T : �9�

The corresponding non-dimensional boundary con-

ditions are:

w � 0; T � ÿ��RV=2� ÿ RHx at z � �1=2: �10�
In the following, we will con®ne our attention to the case

where the gravity ®eld is governed by a linear pro®le,

i.e., h�z� � 1ÿ ��z� �1=2�� with � being a constant; the

analysis, however, is applicable to a wide variety of

other ®elds.

The basic steady state solution �us; Ts; ps� of Eqs. (7)±

(9) subjected to boundary conditions (10) is given by

us � RH�b0 � b1z� b2z2�; vs � 0; ws � 0;

rTs �
ÿÿ RH; 0;ÿ RV � R2

H�c0 � c1z� c2z2 � c3z3��;
rps � Tsh�z�kÿ us; �11�

where

d � 1ÿ �
2
; b0 �

�

24
; b1 � d; b2 � ÿ

�

2
; �12�

c0 �
d

24
; c1 � ÿ

�

24
; c2 � ÿ

d
2
; c3 �

�

6
; �13�

and where we have imposed the requirement that there is

no net horizontal mass ¯ux in the x-direction:Z 1=2

ÿ1=2

us dz � 0: �14�

We now perturb the steady state solution as follows:

v � us � u; T � Ts � h; P � ps � p: �15�

The perturbation equations then take the form

r � u � 0; �16�

u�rp � hh�z�k; �17�

oh
ot
� �u � r�h � r2hÿ us � rhÿ u � rTs; �18�

where us and rTs are given by (11). The corresponding

boundary conditions become

w � h � 0 at z � �1=2: �19�

3. The eigenvalue problems of non-linear and linear

stability analysis

As the linearized system of Eqs. (16)±(18) is not

symmetric (self-adjoint), the non-linear energy method

will thus give di�erent results from the linear stability

method. To perform the non-linear energy stability

analysis, we de®ne an energy functional as

E�t� � n
2
khk2

; �20�

where n is the positive coupling parameter. On multi-

plying Eq. (17) by u, Eq. (18) by h and the integrating

over V, we ®nd (after using the boundary conditions and

divergence theorem)

1

2

d

dt
khk2 � ÿkrhk2 ÿ h�u � rTs�hi; �21�

kuk2 � hh�z�hwi: �22�

Here, V denotes a typical periodicity cell, h�i denotes the

integration over V, and k � k denotes the L2(V) norm.

The system of Eqs. (21) and (22), along with (20), can be

put in the form

dE
dt
� IÿD; �23�

where

I � ÿnh�u � rTs�hi � hh�z�hwi; �24�

D � nkrhk2 � kuk2
: �25�

We now de®ne

m � max
H

I

D
; �26�

where H is the space of admissible solutions. On com-

bining (23) with (25) and (26), and by using Poincar�e
inequality, we can infer, for 0 < m < 1, that

dE
dt
6 ÿ 2p2�1ÿ m�E: �27�
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Inequality (27) clearly indicates that for 0 < m < 1,

E�t� ! 0 at least exponentially as t !1.

We now return to (26) and consider the maximum

problem at the critical argument m � 1. The associated

Euler±Lagrange equations become

ÿ nrTs � u� hw� 2nr2h � 0; �28�
nrTshÿ hhk� 2u � rx; �29�

where x is a Lagrange multiplier introduced since u is

solenoidal. We perform the following standard normal

mode analysis

�u; v;w; h;x� � �u�z�; v�z�;w�z�; h�z�;x�z�� exp�i�axx� ayy��:
�30�

On eliminating the variables u; v, and x, we derive the

corresponding eigenvalue equations, which can, after

some rearrangement of terms, be written as

2k
a2
�D2 ÿ a2�w� �khÿ f �h� i

axRH

a2
Dh � ÿRVh; �31�

2 D2

 
ÿ a2 � a2

y R2
H

4ka2

!
h� �khÿ f �w� i

axRH

a2
Dw

� ÿRVw; �32�

where k � nÿ1; a2 � a2
x � a2

y ; Dj � dj=dzj � j � 1;2�, and

f � f �z� � R2
H c0

ÿ � c1z� c2z2 � c3z3
�
: �33�

For the purpose of comparison, we will also carry out

the numerical calculation based on the linear stability

theory in the next section. To this end, the correspond-

ing eigenvalue equations of linear stability analysis are

readily derived from Eqs. (16)±(18) by performing the

mode analysis

�u; v;w; h;x� � �u�z�; v�z�;w�z�; h�z�;x�z��
� exp i�axx

� � ayy� � rt
�
: �34�

We, thus obtain

L1�w; h� � �D2 ÿ a2�w� a2hh � 0; �35�

L2�w; h� � �D2 ÿ a2 ÿ iaxus�h� i
ax

a2
RHDw

ÿ DTswÿ rh � 0; �36�

where r is the time growth rate. Both eigenvalue equa-

tions, Eqs. (35) and (36) of linear stability analysis, and

Eqs. (31) and (32) of non-linear energy stability analysis,

are subjected to the boundary conditions

w � h � 0 at z � �1=2: �37�

4. Numerical solutions via Chebyshev tau-QZ method

To solve the eigenvalue problems (35)±(37), and (31),

(32) and (37), we employ the Chebyshev tau-QZ method.

We ®rst consider Eqs. (35)±(37). To this end, we turn to

solve the following equations

Lj�w; h� � s2jÿ1TN�1�z� � s2jTN�2�z�; j � 1; 2: �38�

We expand the solution of (38) in a ®nite series of

Chebyshev polynomials as

�w; h� �
XN�2

k�0

�wk ; hk�Tk�z�; �39�

where Tk�z� is the Chebyshev polynomial of degree k

de®ned by

Tk�z� � cos�k arccos z�; ÿ16 z6 1; k � 0; 1; . . .

�40�

We reset the domain from �ÿ1=2; 1=2� to �ÿ1; 1� with

the coordinate transformation of z to 2z, and introduce

the inner product de®ned in the weighted space

L2�ÿ1; 1� as

hr; si �
Z 1

ÿ1

rs�����������������1ÿ z2�p dz: �41�

Since the Chebyshev polymials are orthogonal in the

space de®ned above, we obtain 2�N � 1� equations

hLj�w; h�; Tki � 0; k � 0; 1; . . . ;N ; j � 1; 2: �42�

There are four further conditions arising from (42) and

these are:

hLj�w; h�; TN�ki � s2�jÿ1��kkTN�kk2
; k � 1; 2; j � 1; 2

�43�
and these may be e�ectively used to calculate the s0s,

which in turn may be used to measure the error associ-

ated with the truncation of an in®nite series. Here, k � k
is the norm associated with the inner product (41). The

boundary conditions (37) provide us the other four

equations, i.e.,XN�2

j�0

�ÿ1�jwj � 0;
XN�2

j�0

wj � 0; �44�

XN�2

j�0

�ÿ1�jhj � 0;
XN�2

j�0

hj � 0: �45�

The eigenvalue equations (42) subjected to (44) and (45)

could be written in the matrix form as

A1x � rB1x; �46�
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where x � �w0;w1; . . . ;wN�2; h0; h1; . . . ; hN�2�, and

A1 � 4D2 ÿ a2I H1

H2 4D2 ÿ a2I�H3

� �
; B1 � 0 0

0 I

� �
;

and where the matrices 0; I are zero and identity matri-

ces of N � 3 by N � 3. Here,

D� �Di;j� � 2

pci
�hT 0j ;Tii� i;j� 0;1; . . . ;N �2;

D2 � �D2
i;j� �

2

pci
�hT 00j ;Tii� i;j� 0;1; . . . ;N �2;

H1 � a2�dI�b2Z�; �47�
H2 � �RVÿR2

Hc0�IÿR2
H

c1

2
Z

�
� c2

4
Z2� c3

8
Z3
�
�2iRH

ax

a2
D;

H3 �ÿiaxRH b0I

�
�b1

2
Z�b2

4
Z2

�
;

and in which

Zm � z�m�i;j

h i
� 2

pci
hzmTj; Tii
� �

i; j � 0; 1; . . . ;N � 2; m � 1; 2; 3:

�48�

with the constants cn given by

c0 � 2;
cn � 1; if n > 0;
cn � 0; if n < 0

8<:
and the N � 2; N � 3; 2N � 5; 2N � 6's row of Eq. (46)

are overwritten by the boundary conditions (44) and (45).

The critical vertical Rayleigh number RL is de®ned by

RL � min
ax

min
ay

RV�ax; ay ; �;RH� �49�

such that the choice of RV makes the real part of the

leading eigenvalue, r, of (46), de®ned as having the

largest real part, approaching zero.

Similarly, the generalized eigenvalue equations cor-

responding to Eqs. (31) and (32) subjected to (37) for the

non-linear energy stability analysis could be written as

A2x � RVB2x; �50�
where

A2 �
2k
a2 �4D2 ÿ a2I� H4

H4 2�4D2 ÿ a2I� �H5

� �
;

B2 � 0 ÿI

ÿI 0

� �
;

and where

H4 � �kdÿ R2
Hc0�Iÿ

k�� R2
Hc1

2
Zÿ R2

Hc2

4
Z2

ÿ R2
Hc3

8
Z3 � i

2axRH

a2
D;

H5 �
a2

y R2
H

2ka2
I; �51�

The critical vertical Rayleigh number RE is de®ned as

RE � max
k

min
ax

min
ay

RV�k; ax; ay ; �;RH�; �52�

where RV is the leading eigenvalue of (50), de®ned as

having the smallest positive eigenvalue. We remark that

all the eigenvalues of (50) are real which arise from (31)

and (32). This can be shown by multiplying (31) by w�

(complex conjugate), (32) by h� and integrating over

�ÿ 1
2
; 1

2
�, and then adding the results. Finally taking the

imaginary part, we obtain

�hhw�i � hwh�i�Ri
V � 0; �53�

where h�i denotes the integration over �ÿ 1
2
; 1

2
�, and

RV � Rr
V � iRi

V. The coe�cient of Ri
V in (52) is non-zero

real unless wr; hr and wi; hi (the real and imaginary parts

of w and h) are orthogonal. Thus, we can conclude that

RV must be real.

To determine the linear stability threshold (49), we

®rst employ the ZGEGV routine of LAPACK library

[11], implementing the QZ algorithm of Moler and

Stewart [12] for solving the generalized eigenvalue

equation (46), for the ®xed values of all parameters.

Then, the secant method is applied to search for RV such

that the real part of the leading eigenvalue r approaches

zero. Finally, the critical vertical Rayleigh number RL of

(49) is optimized, by using the quasi-Newton algorithm

implemented in the routine E04JYF of NAG library, to

®nd the minimum RL over the horizontal wave numbers

ax and ay .

In order to ®nd the energy stability threshold (52),

for ®xed k, ax and ay , � and RH, we ®rst ®nd the leading

eigenvalue of (50) using the QZ algorithm. The critical

vertical Rayleigh number RE of (52) is then solved using

the golden section search routine to ®nd the minimun

over ax and ay , and then the maximun over k.

5. Results and discussion

We begin our remarks with the important observa-

tion that in both the schemes for calculating the energy

and linear stability thresholds, we ®nd the onset of in-

stability is with ax � 0, and ri � 0 in the linear case.

That is, the preferred mode of disturbance is the lon-

gitudinal mode, and the longitudinal stationary mode in

the linear case.

Figs. 1 and 2 show the variation of RL (the critical

Rayleigh number in the linear theory) and RE (the

critical Rayleigh number in the energy method) with

the horizontal Rayleigh number RH for two values of the

gravity parameter �. From the graphs, we observe that

as RH increases the values of both RL and RE increase

and thus indicate the stabilizing e�ect. We note that the

values of RL are always higher than those of RE. This is

quite understandable because the linear stability theory
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gives su�cient conditions for instability while the energy

stability theory gives the su�cient conditions for stab-

ility. Thus, the di�erence between the values of RL and

RE reveals that there is a band of Rayleigh numbers

where subcritical instabilities may arise. We note that

this band widens as RH increases. In comparison to the

results of [3] and [4], we also conclude that a decrease in

gravity has a stabilizing e�ect. This conclusion is further

strengthened in Fig. 3 which shows the variation of RE

and RL with the gravity parameter � at RH � 20. Here,

clearly an increase in � (decrease in gravity) indicates an

increase in the RL and RE values.

In order to check whether an increase in the hori-

zontal Rayleigh number values always has a stabilizing

e�ect, we have calculated the RL and RE values for a

broad range of values of RH at � � 1. These calculations

are reported in Table 1. It is clear from the table that,

initially the values of both RL and RE increase as RH

increases. However, as RH continues to increase both RL

and RE reach a maximun, and decrease with further in-

crease of RH, and eventually both pass through zero.

This means that the horizontal ¯ow becomes unstable

even in the absence of an applied variation gradient.

Fig. 3. Variation of RL and RE with gravity parameter

� at RH � 20.

Table 1

RL and RE variations with RH for � � 1:0

RH RL RH RE

0.0000 77.0797 0.0000 75.725

10.000 78.4810 10.000 76.427

20.000 82.6794 20.000 78.491

30.000 89.6575 30.000 81.795

40.000 99.3865 40.000 86.156

50.000 111.826 50.000 91.350

60.000 126.923 60.000 97.142

70.000 144.612 70.000 103.312

80.000 164.811 80.000 109.666

90.000 187.422 90.000 116.038

100.00 212.318 100.00 122.286

110.00 239.339 110.00 128.291

120.00 268.259 120.00 133.943

130.00 298.748 130.00 139.139

140.00 330.221 140.00 143.780

150.00 328.999 150.00 147.761

160.00 327.917 160.00 150.969

170.00 320.415 170.00 153.277

180.00 306.339 180.00 179.726

190.00 285.489 185.00 174.431

200.00 257.745 190.00 163.949

210.00 223.096 195.00 150.232

220.00 181.647 200.00 132.775

230.00 133.578 208.00 102.352

240.00 79.1153 216.00 65.7016

250.00 18.5008 224.00 25.2835

252.87 0.00000 228.20 1.9174

Fig. 2. Linear and energy stability results for � � 1:50.

Fig. 1. Linear and energy stability results for � � 1:00.

1590 P.N. Kaloni, Z. Qiao / International Journal of Heat and Mass Transfer 44 (2001) 1585±1591



Thus, we conclude that the e�ect of reducing gravity is to

delay the instability of Hadley ¯ow but the reduction in

gravity does not eliminate the horizontal ¯ow instability.
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